The other big news is that we finished another mirror! The Large Synoptic Survey Telescope (LSST) will revolutionize astronomy in so many ways. It utilizes an 8.4 meter mirror, but there any resemblance to previous project ends! While the outer part of the mirror looks normal, the inner part is hollowed out to a much steeper curve - yes, a second curve on the same mirror substrate! I've seen it done on small substrates, but nothing on this scale. Doing it this way assures that the M1 and M3 curves will always be in alignment in the 3-mirror system. At left is the optical layout of the telescope, showing the 2 curves on the primary mirror. The unusual primary is just the start - it has a huge mosaic of solid-state imaging chips at the focus, allowing a 3.5 degree field-of-view (7 full moons across!), unheard of for such a large telescope. The wide field will be used to cover the entire sky every couple days to search for anything that changes with time - comets, asteroids, variable stars/galaxies... It is predicted to be a real game-changer, making data publicly available immediately on-line. Go to the link above for more images and info on the LSST project.

Once dry, the Opticote surface protects the precision surface with a thin plastic layer. We use an array of suction cups to lift the mirror out of the polishing cell to place it in the transport box, and that layer keeps any dust from scratching the polished surface. When we want the glass to be exposed again, it peels off easily, any remnants can be quickly cleaned off with a little acetone. At left, the coated mirror sits on our test tower, with the edge of the mirror pressure washed to remove remnants of polishing compound visible in the above image. Some of the steelwork structures over the mirror are used for various aspects of measuring the optical surfaces in the lab.
So anyway, on that Saturday back in February, I set up my camera to take an image of the crew every 8 seconds. Assembled into a time-lapse sequence, it makes an interesting clip showing the 70 minute process that marks the conclusion of work on the project. Note however its move to airport storage is not permanent - when the telescope cell is finished, it will return to the lab for continued testing before boxing up again for transport to Chile. So we were glad to see it go, but it will return once more before leaving permanently... Here is the Opticote clip - go full screen and HD if you can!
No comments:
Post a Comment